The digital transformation of the construction industry is in full swing with an endless stream of new technologies and standards. At the core of this transformation are the individual architects, engineers, constructors, facility operators, and many others who need to deploy these technologies and integrate them into existing and new processes. To succeed, each practitioner needs to be digitally competent and capable of embracing new ways of working within increasingly complex information-rich environments. But what is ‘digital competence’ and how can it be maintained and improved?
In this restart of BIM ThinkSpace episodes (last one was published on September 9, 2015!), I will expand on the topic of individual competence (Episode 17) by introducing a new competence model offering a deeper understanding of 'human abilities'. This expansion is necessary to allow us to assess and improve these abilities as they get increasingly influenced—whether enhanced or diminished - by large language models, specialised robots, and autonomous agents.
What is competence?
Competence is a term used to describe the abilities of individuals and teams, not those of organisations, systems or AI agents [1]. A competent individual is a person (e.g. a chef at a restaurant) who has gained the abilities to complete a specific activity (e.g. prepare a vegetarian lasagna dish for a restaurant patron), deliver an output (e.g. a well-prepared and well-presented dish), and achieve a desired outcome (e.g. a satisfied patron who leaves a 5 star review on Google Maps!).
Competence satisfies a defined requirement. That is, the chef cannot be called a ‘competent chef’ if he sings beautifully, can dance while cooking but still delivers a tasteless, badly presented plate! Another important characteristic of competence is that it must be gained through effort and thus is learnable. The competence displayed by the chef can be replicated by the sous-chefs if they receive proper training, know the recipe, and follow the steps leading to – all other things being equal - the same desired outcome.
Understanding competence can be challenging for more complex activities and outcomes, and we need a methodology to analyse what an individual can do competently. One such methodology is to break down “competence” into smaller components similar to how we dismantle a complex product to understand the functions and connections between its parts.
The five components of competence
Competence is a combination of three overlapping abilities - Knowledge, Skill, and Experience – and two enablers for these abilities - intelligence and attitude. These abilities and enablers do not exist independently but can be evaluated separately within an Integrated Competence Model (ICM). Let’s try to understand each of these components first and then observe them in a couple of sample use cases.
K
Knowledge is the ability derived from an individual’s understanding of underlying principles, concepts, and connections within a specific context (e.g. understanding the applicability of construction codes or the effects of supply and demand on product pricing).
S
Skill is the ability corresponding to an individual’s use of physical or digital tools (e.g. using a screwdriver or a web application).
E
Experience is the ability stemming from an individual’s learning by exposure to different situations or throughtask repetition within a specific context over time [2] (e.g. working as a receptionist in many hotels provides hospitality experience, or working in a particular country for many years provides local experience).
i
Intelligence is an enabler emanating from an individual’s potential to solve problems or to generate an output of value. Each one of us has a unique combination of ‘intelligences’ - spatial, logical, musical, linguistic, cultural or similar [3] - that we are born with and can be honed over time. For example, some of us can learn new languages faster, while others can play many musical instruments with astonishing mastery and ease.
a
Attitude is an enabler represented by an individual’s mindset towards a specific activity or expected outcome (e.g. being passionate about sharing knowledge with students or having the empathy to take care of patients). As opposed to other components which have absolute value (e.g. more Skill or Experience is always better to complete a specific task) an individual’s attitude only has relative value to the task. That is, a specific attitude may have a positive, neutral or negative impact on competence. For example, aggressiveness is not desirable in many contexts, but it is a welcome attribute for MMA fighters. When inspecting ‘attitude’, it is important not to confuse it with ‘behaviour’: while attitude is one driver of behaviour, behaviour also reflects situational Context, temporal Circumstances, surrounding Culture, and personal Values (CCCV).
Sample use cases
Ok, let’s apply this 5-components model to analyse the competence of Waleed (a bus driver, the actor in this story) who is tasked with transporting students and teachers (the activity) from their school campus in the city centre, through the suburbs, on the state highway, and then safely drop them off at a ski camp up in the mountains (the desired outcome). We can analyse Waleed’s driving competence by establishing:
Waleed’s Knowledge of the vehicle, route, driving rules, etc.
Waleed’s Skill in driving the bus including the motor abilities to use the steering wheel, pedals, various buttons, etc.
Waleed’s Experience in driving a bus through busy city streets, on high-speed motorways, up snow-covered mountains, etc.
Waleed’s linguistic, interpersonal, and logical intelligence enabling him to communicate effectively and resolve unexpected issues (e.g. adding unscheduled stops, changing course to avoid traffic etc.)
Waleed’s attitude as a driver, his respect for the school’s schedule, adherence to road rules, and being a safety-minded operator of a vehicle filled with a busload of over-excited kids!
Let's also consider Zaha, a senior engineer within a large engineering firm (the actor) who leads her small team (activity) to improve the quality and richness [4] of their digital deliverables (desired outcome). Using the 5-components model, we can establish Zaha’s competence by assessing:
Zaha’s knowledge of engineering principles, digital engineering practices, industry standards, and the latest protocols relevant to her projects.
Zaha’s skill in utilising various digital tools essential for authoring, reviewing, and exchanging information-rich models.
Zaha’s experience in leading complex projects and working in information-rich digital environments.
Zaha’s spatial, interpersonal, and logical-mathematical intelligence necessary to visualise complex engineering solutions, collaborating effectively with project partners, and analysing the efficiency of competing technical options.
Zaha’s attitude reflected in her supportive or commanding leadership style and her patience/impatience in nurturing and maintaining a collaborative team environment.
By evaluating these five components, in greater detail of course, we can establish whether Zaha is, or is not, a competent digital transformation agent within her organisation.
In summary
Digital transformation offers many opportunities to improve the productivity of the construction industry. However, for this to happen, we need competent individuals who can manage the increased complexities and challenges. Before we can devise a plan to improve competence, we first need to understand it, then accurately assess it, and lastly attempt to improve it. The Integrated Competence Model introduced in this post provides a basis for understanding competence through its components. In future posts or articles on LinkedIn, I will clarify how to connect this understanding of competence with robotics and artificial intelligence. I will also provide examples of how to use ICM to develop roles, training materials, and continuously improve our digital competence in an era of rapid and continuous change!
Important: the Integrated Competence Model (ICM) was developed by was developed by Dr. Bilal Succar of ChangeAgents AEC for the assessor.io platform and then shared for wider public benefit through the not-for-profit BIMe Initiative (BIMexcellence.org) under an Attribution-NonCommercial-ShareAlike 4.0 Internationallicense. Bilal Succar, PhD, is a digital performance specialist with extensive experience in competence assessments across many countries. His research and work through focus on developing frameworks and online tools that bridge theory and practice to improve the digital effectiveness of individuals and organisations across the construction industry. For any questions or clarifications, please contact https://www.linkedin.com/in/bsuccar/
A print-ready, citable version is available as: Succar, B. (2024). Redefining Competence: a five-component model for digital transformation, BIM ThinkSpace.com, Ep. 25. Zenodo. https://doi.org/10.5281/zenodo.14043675
[1] Competence is one part of a larger performance picture. Other terms and metrics that contribute to overall performance include Readiness, Capability, Compliance, Conformance, Compatibility, and Maturity. These apply to different actors at varied organisational scales. Refer to Organisational Hierarchyhttps://www.bimframework.info/2013/12/organisational-hierarchy.html
[4]Information richness refers to the overlaying of different uses in the same deliverable. For example, a 3D digital model that allows visualisation, quantity take-off and structural analysis is more information rich than a similar model that only allows visualisation. For more details, please download the Model Uses Table https://bimexcellence.org/resources/200series/211in/
Ever since the BIM wave struck the industry’s shores, there have been two intriguingly related discussions covering its drivers and its deliverables. The first discussion (or open question) is which industry stakeholder stands to benefit most from the wide deployment of object-based tools, procedures and protocols? Are facility owners the ones who will receive all the benefits[1]? Or is it the contractors/builders who will be reaping most of the rewards? What about architects, engineers and other designers; aren’t they the ones to really benefit from BIM?
This episode is available in other languages. For a list of all translated episodes, pleaser refer tohttp://www.bimthinkspace.com/translations.html. The original English version continues below:
The second discussion is which stakeholder is or should be leading [2] the industry-wide implementation drive? Should the architect lead by being the first to invest in relevant technologies and to develop collaboration workflows? Or, should the client drive construction innovation [3] through defined protocols or performance metrics? But isn’t it a fact that specialty sub-contractors (ducting specialists, steel detailers, etc…) were the first– for varied reasons – to jump onto the ‘elemental 3D’ train?
The jury is still out on both questions and there are a lot of facts mixed with an equal measure of theories (including conspiracy-flavoured ones) floating around. This post is not about analysing ‘who should benefit’, ‘how should the benefits be distributed’ or ‘who should lead’ but it is more about a set of personal observations over a period of many years [4].
These observations are NOT based on rigorous research and are thus exploratory until proven right or wrong through formal investigations [5]. However, it may be beneficial to expose these observations hoping to encourage others to provide their own. To that end, I’ve compiled my readings, thoughts [6] and practical experiences into the below image:
Figure 1. Industry BIM Leadership vs. Expected BIM Benefits v1.0
The above image explores the relationship between two variables: industry BIM LEADERSHIP and expected BIM BENEFITS. Industry stakeholders are shown clustered around their respective Project Lifecycle Phase [7]: Design [D], Construction [C] and Operation [O]. Until a more formal investigation is conducted to confirm (or refute) the above, it is intriguing to me how those who stand to benefit the most are not the same as those who are actually leading the pack.
[1] The benefits of using BIM concepts and technologies have been sufficiently documented by countless others; there’s no need to repeat them here. For a taste of these benefits, please check here.
[2] BIM leadership is a loose term describing actions taken (not words) including investment in BIM software, development of workflow protocols, engaging with others for the purposes of model-based collaboration, plus many other factors.
[4] For those concerned about context, the Visual Knowledge Model (VKM) provided above is based on informal yet informed ‘reflective learning’ (Derek, Svetlana, Janice, Frank, & Christophe, 2008) of the BIM domain within the Australian market from 2001-2010.
[5] The VKM may (or may not) be descriptive or predicative of other markets and durations.
[6] This VKM was first labelled BIM Innovation vs. BIM Benefits. Credit for some of the underlying concepts goes to Dr Guillermo Aranda-Mena (RMIT University) and from him to Jon Anderson (Hive Engineering).
[7] To understand Project Lifecycle Phases, please refer to BIM Episode 10.
After introducing the basic differences between BIM Capability and BIM Maturity in Episode 11, and briefly discussing the many available and relevant maturity models in Episode 12, this post introduces a new specialized tool to measure BIM performance: the BIM Maturity Index (BIMMI).
This episode is available in other languages. For a list of all translated episodes, pleaser refer tohttp://www.bimthinkspace.com/translations.html. The original English version continues below:
As an additional reminder, BIM Capability is the basic ability to perform a task or deliver a BIM service/ product. BIM Capability Stages (or BIM Stages) define the minimum BIM requirements - the major milestones that need to be reached by a team or an organization as it implements BIM technologies and concepts (Refer to Episode 8 or Figure 1 below). Having a ‘measuring tape’ to establish BIM capability is important because it is a quick yet accurate assessment of an organization’s ability to deliver BIM services. For example, using Capability as a metric, we can safely establish that an organization at Stage 3 is able to deliver more BIM services to a client or project-partner than an organization at Stage 1 or 2:
Figure 1. The Three BIM Capability Stages (replaced - latest version can be found here)
However, since BIM Capability Stages are established when minimum requirements are met; they cannot assess abilities (or lack of) beyond these minimum requirement. As a case in point, when using the Capability metric, two organizations using Tekla to primarily generate model-based steel details are said to be at BIM Stage 1. This is a useful bit of information because it sets these two organizations apart from all others still using CAD but tells us very little about their delivery speed, data richness or modelling quality. In fact, the two organizations may well be many experience-years apart without that being detected by the Capability scale. That’s why another metric (Maturity) is needed to assess and report on significant variations within service delivery and their underlying causes.
The term ‘BIM Maturity’ refers to the quality, repeatability and degrees of excellence of BIM services. In other words, BIM Maturity is the more advanced ability to excel in performing a task or delivering a BIM service/ product. Without measuring these qualities, there is no way of differentiating between ‘real’ abilities to deliver BIM services form blatant BIM wash.
To address this issue, the BIM Maturity Index[1] (BIMMI) has been developed by investigating and then integrating several maturity models from different industries[2]. BIMMI is similar to many Capability Maturity Models (CMM) discussed in Episode 11 but reflects the specifics of BIM technologies, processes and policies.
BIMMI has five distinct Maturity Levels: (a) Initial/ Ad-hoc, (b) Defined, (c) Managed, (d) Integrated and (e) Optimized. In general, the progression from lower to higher levels of BIM Maturity indicates (i) better control through minimizing variations between targets and actual results, (ii) better predictabilityand forecasting by lowering variability in competency, performance and costs and (iii) greater effectiveness in reaching defined goals and setting new more ambitious ones[3 & 4]. Figure 2 below visually summarizes the five Maturity Levels or “evolutionary plateaux"[5] followed by a brief description of each level:
Figure 2. The Five Maturity Levels (depicted at BIM Stage 1)
Maturity Level a (Initial orAd-hoc): BIM implementation is characterized by the absence of an overall strategy and a significant shortage of defined processes and policies. BIM software tools are deployed in a non-systematic fashion and without adequate prior investigations and preparations. BIM adoption is partially achieved through the ‘heroic’ efforts of individual champions – a process that lacks the active and consistent support of middle and senior management. Collaboration capabilities (if achieved) are typically incompatible with those of project partners and occur with little or no pre-defined process guides, standards or interchange protocols. There is no formal resolution of stakeholders’ roles and responsibilities.
Maturity Level b (Defined): BIM implementation is driven by senior managers’ overall vision. Most processes and policies are well documented, process innovations are recognized and business opportunities arising from BIM are identified but not yet exploited. BIM heroism starts to fade in importance as competency increases; staff productivity is still unpredictable. Basic BIM guidelines are available including training manuals, workflow guides and BIM delivery standards. Training requirements are well-defined and are typically provided only when needed. Collaboration with project partners shows signs of mutual trust/respect among project participants and follows predefined process guides, standards and interchange protocols. Responsibilities are distributed and risks are mitigated through contractual means.
Maturity Level c (Managed): The vision to implement BIM is communicated and understood by most staff. BIM implementation strategy is coupled with detailed action plans and a monitoring regime. BIM is acknowledged as a series of technology, process and policy changes which need to be managed without hampering innovation. Business opportunities arising from BIM are acknowledged and used in marketing efforts. BIM roles are institutionalized and performance targets are achieved more consistently. Product/service specifications similar to AIA’s Model Progression Specifications[6] or BIPS’ information levels[7] are adopted. Modelling, 2D representation, quantification, specifications and analytical properties of 3D models are managed through detailed standards and quality plans. Collaboration responsibilities, risks and rewards are clear within temporary project alliances or longer-term partnerships.
Maturity Level d (Integrated): BIM implementation, its requirements and process/ product innovation are integrated into organizational, strategic, managerial and communicative channels. Business opportunities arising from BIM are part of team, organization or project-team’s competitive advantage and are used to attract and keep clients. Software selection and deployment follows strategic objectives, not just operational requirements. Modelling deliverables are well synchronized across projects and tightly integrated with business processes. Knowledge is integrated into organizational systems; stored knowledge is made accessible and easily retrievable[8]. BIM roles and competency targets are imbedded within the organization. Productivity is now consistent and predictable. BIM standards and performance benchmarks are incorporated into quality management and performance improvement systems. Collaboration includes downstream players and is characterized by the involvement of key participants during projects’ early lifecycle phases.
Maturity Level e (Optimized): Organizational and project stakeholders have internalized the BIM vision and are actively achieving it[9]. BIM implementation strategy and its effects on organizational models are continuously revisited and realigned with other strategies. If alterations to processes or policies are needed, they are proactively implemented. Innovative product/process solutions and business opportunities are sought-after and followed-through relentlessly. Selection/use of software tools is continuously revisited to enhance productivity and align with strategic objectives. Modelling deliverables are cyclically revised/ optimized to benefit from new software functionalities and available extensions. Optimization of integrated data, process and communication channels is relentless. Collaborative responsibilities, risks and rewards are continuously revisited and realigned. Contractual models are modified to achieve best practices and highest value for all stakeholders. Benchmarks are repetitively revisited to insure highest possible quality in processes, products and services.
...
In a future post, I’ll shed more light on the detailed BIM Competencies[10] that Capability and Maturity tools actually measure. For now, I’ll provide a sample BIM Performance Assessment summary generated using both metrics. Please note that - although the assessment below is based on my consultancy work - it has been significantly altered so that the ‘assessed’ organization cannot be identified. I’ve also removed most Performance Achievements (the useless positives), focused on Performance Challenges (the beneficial negatives) and added some explanatory notes [enclosed in brackets].
Sample Performance Assessment – Executive Summary
“...upon concluding a preliminary assessment of [organization name], the overall organizational BIM Performance has been tentatively established at 1a [Capability Stage 1, Maturity Level a] pending the provision of [specific artefacts]...
The [organization name] has been established at Capability Stage 1 [...because it] has actively employed [BIM software tool name] to generate [X number of projects] over the past [Y months/years] at a [utilization rate of Z%]...[other metrics]...none of these projects were collaborative with the exception of [pilot project name]...
The [organization name] has been established at Maturity Level a based on [a specific Maturity scoring system]....BIM Performance Achievements have been detailed in [document name] while BIM Performance Challenges have been detailed in [document name]...below is a summary of these Performance Challenges [grouped under the three main types of BIM Competencies]:
Technology: Usage of software applications is unmonitored and unregulated [different software tools are used although they generate very similar deliverables]. Software licence numbers are misaligned to staff requirements. 3D Models are mostly relied upon to only generate accurate 2D drawings [the data richness within the model is not being exploited]. Data usage and storage are not well defined. Hardware specifications are generally adequate but are non-uniform. Some computers fall well-below confirmed staff skills and their expected BIM deliverables [equipment replacement and upgrades are mostly treated as cost items - postponed whenever possible and committed-to only when unavoidable]. With respect to Networks, currently adopted solutions are not well integrated into the workflow [individuals and teams use whatever tools at hand to communicate and share files]. While there is an Intranet with a dedicated BIM section, the content is mostly static and not well suited to harvest, store and share knowledge [very few staff have administrative rights (or motivation) to upload information to the intranet].
Process:Senior leaders/managers have varied visions about BIM, and its implementation is conducted without a consistent overall strategy [as typical at this maturity level, BIM is treated as a technology stream with minimal consideration for its process and policy implications]. Change resistance is evident among staff [and possibly wide-spread amongst middle management]. The workplace environment is not recognized as a factor in increasing staff satisfaction/motivation [found to be not conducive to productivity – think of noise, glare and ergonomics]. While knowledge is recognized as an organizational asset, it is mainly shared between staff in an informal fashion [through oral tips, techniques and lessons learned].
Business opportunities arising from BIM are not well acknowledged. BIM objects [components, parts or families] are not consistently available in adequate numbers or quality. 3D model deliverables [as BIM products] suffer from too high, too low or inconsistent levels of detail. At the time of this assessment, it appears that more importance is given to [visual] quality of 2D representations than is given to 3D model accuracy [also, products and services offered by the organization represent a fraction of the capabilities inherent within the software tools employed]. There are no [overall] modelling quality checks or formal audit procedures.
BIM Projects are conducted using undocumented and thus inconsistent practices [there are no project initiation or closure protocols]. Staff competency levels are unmonitored by [and thus unknown to] management, BIM roles need clarification [roles are currently ambiguous] and team structures pre-date BIM. Staff training is not well structured and workflows are not well understood [in one instance, staff were not systematically inducted into BIM processes; in another, were confused about workflows and ‘who to go to’ for technical and procedural assistance].
Performance is unpredictable [management cannot predict BIM project duration or HR costs] and productivity appears to still depend on champions’ efforts within teams. A mentality of ‘shortcuts’ [working around the system] has been detected. Performance may be inconsistent as it is neither monitored nor reported in any systematic fashion [as typical at this Maturity Level, the organization had islands of concentrated BIM productivity separated by seas of BIM idleness/confusion].
Policy:The organization does not yet document its detailed BIM standards or workflows. There are no institutionalized quality controls for 3D models or 2D representations. The BIM training policies are not documented [current training protocols are out-dated] and auxiliary educational mediums are not provided to staff [training DVDs and the like]. Contractually, there is no BIM-specific risk identification or mitigation policy.”
The above assessment summary may not provide a glossy image of an aspiring BIM-enabled organization. However, such a list of challenges – pointed and revealing as it is - will help the organization’s management to identify where it needs to invest time and energy to enhance its BIM performance.
In summary, understanding Capability, Maturity and how to use both metrics to assess BIM Competencies can assist AECO stakeholders to determine their overall BIM performance levels. Once performance assessments are made, performance improvements will soon follow.
Updated Oct 23, 2015: A video is now available explaining the Point of Adoption model on the BIM Framework's YouTube channel:
Updated May 10, 2016: The model is now published as "Succar, B. and Kassem, M. (2016), Building Information Modelling: Point of Adoption, CIB World Congress, Tampere Finland, May 30 - June 3, 2016" - download: http://bit.ly/BIMPaperA9
[1] Note that I opted to use the term BIM Maturity Index rather than Model to avoid confusion.
[2] Succar, B. (2009) Building Information Modelling Maturity Matrix. IN Underwood, J. & Isikdag, U. (Eds.) Handbook of Research on Building Information Modelling and Construction Informatics: Concepts and Technologies, Information Science Reference, IGI Publishing.
[3] Lockamy III, A., & McCormack, K. (2004). The development of a supply chain management process maturity model using the concepts of business process orientation. Supply Chain Management: An International Journal, 9(4); pages 272-278
[4] McCormack, K., Ladeira, M. B., & Oliveira, M. P. V. d. (2008), Supply chain maturity and performance in Brazil. Supply Chain Management: An International Journal, 13(4; pages 272-282
[6] Refer to 2008 AIA California Council, Model Progression Specifications (http://bit.ly/AIAMPS 70KB PDF document)
[7] Refer to 2008 Danish Government’s BIPS, Digital Construction 3D Working Method http://bit.ly/BIPS3D 2.2MB PDF)
[8] Refer to the 4 levels in knowledge retention in Arif, M. et al. (2009), Measuring knowledge retention: a case study of a construction consultancy in the UAE. Engineering, Construction and Architectural Management, 16(1); pages 92-108.
[9] Nightingale, D.J. and J.H. Mize (2002), Development of a Lean Enterprise Transformation Maturity Model. Information Knowledge Systems Management, 3(1): p. 15.
[10] A definition of BIM Competencies has been provided in Episode 12 (endnote 2). You can also use the blog’s custom search engine to find it.
A construction project passes through multiple phases from inception to demolition. These phases are typically referred to as Project Lifecycle Phases (PLPs) and include pre-construction activities like programming, cost planning as well as post-construction activities like occupancy and facility maintenance. Lifecycle phases can be delineated in a few ways but I have personally adopted a simplified subdivision as follows:
This episode is available in other languages. For a list of all translated episodes, pleaser refer tohttp://www.bimthinkspace.com/translations.html. The original English version continues below:
Construction projects pass through three major lifecycle phases: Design [D], Construction [C] and Operations [O]. These phases are also subdivided into sub-phases (Table 1) which are in turn further subdivided into activities, sub-activities and tasks.
Design Phase
Construction Phase
Operations Phase
D1: conceptualisation, programming and cost planning
C1: construction planning and construction detailing
O1: occupancy and operations
D2: architectural, structural and systems design
C2: construction, manufacturing and procurement
O2: asset management and facility maintenance
D3: analysis, detailing, coordination and specification
C3: commissioning, as-built and handover
O3: decommissioning and major re-programming
Table 1: Project Lifecycle Phases and sub-Phases
As an example of further subdivision, the Design phase [D] includes Architectural, Structural and Systems Design sub-phase [D1], which includes an Architectural Design activity [D1.1], which includes the Conceptualisation sub-activity [D1.1a] which lastly includes a 3D Modelling task [D1.1a.01]. The usefulness of these subdivisions will not be too evident in this blog post but just remember that BIM implementations can and will affect construction projects at Phase, Task and everything in between. For now we’ll just focus on the effects of BIM on Phases and I’ll discuss the effects of BIM on smaller lifecycle subdivisions in later posts.
BIM Stage 1: Object-Based Modelling
As a reminder, BIM implementation is initiated through the deployment of an ‘object-based 3D parametric software tool’ similar to ArchiCAD®, Revit®, Digital Project® and Tekla®. At Stage 1, users generate single-disciplinary models within either design [D], construction [C] or operation [O] – the three Project Lifecycle Phases. These models - like architectural design models [D] and duct fabrication models [C] - are primarily used to automate the generation and coordination of 2D documentation and 3D visualisations. Other deliverables of Stage 1 models include basic data exports (ex: door schedules, concrete quantities, FFE costs,...) and light-weight 3D models (ex: 3D DWF, 3D PDF, NWD, etc...) which have no modifiable parametric attributes. However, the ‘semantic’ nature of object-based models and their ‘hunger’ for early and detailed resolution of design and construction matters encourage ‘fast-tracking’ of Project Lifecycle Phases (Fig. 1).
Fig. 1. Project Lifecycle Phases at BIM Stage 1 – linear model
Figure 1 above depicts how object-based modelling encourages fast-tracking: when a project is still executed in a phased manner yet design and construction activities are overlapped to save time [2]. That is, after achieving maturity within Stage 1 implementations, BIM players will acknowledge the benefits of engaging other design and construction players with similar modelling capabilities. Such acknowledgement and subsequent action will lead them to BIM Stage 2, model-based collaboration.
BIM Stage 2: Model-Based Collaboration
Having developed single-disciplinary modelling expertise through Stage 1 implementations, Stage 2 players actively collaborate with other disciplinary players. This may occur in many technological ways according to each player’s selection of BIM software tools.
Model-based collaboration can occur within one or between two Project Lifecycle Phases. Examples of this include the Design-Design interchange of architectural and structural models [DD], the Design-Construction interchange of structural and steel models [DC] and the Design-Operations interchange of architectural and facility maintenance models [DO]. Stage 2 maturity also alters the granularity of modelling performed at each lifecycle phase as higher-detail construction models move forward and replace (partially or fully) lower-detail design models (Fig. 2).
Fig. 2. Project Lifecycle Phases at BIM Stage 2 – linear model
Figure 2 above depicts how model-based collaboration is a factor in instigating fast-tracking and changing relative modelling intensity within each lifecycle phase. The overlap depicted is driven by construction players increasingly providing design-related services as part of their Stage 2 offerings and design players increasingly adding construction and procurement information into their design models. Also, changes in semantic richness across lifecycle phases occur as detailed construction and fabrication models (ex: steel detailing and duct fabrication models) partially replace the more generic upstream structural and mechanical design models.
BIM Stage 3: Network-Based Integration
In this stage semantically-rich integrated models are created, shared and maintained collaboratively across Project Lifecycle Phases. This integration can be achieved through model server technologies (using proprietary, open or non-proprietary formats), single / integrated / distributed / federated databases [1,3] and/or SaaS (Software as a Service) solutions [4]. From a process perspective, synchronous interchange of model and document-based data cause project lifecycle phases to overlap extensively forming a phase-less process (Fig.3).
Fig. 3. Project Lifecycle Phases at BIM Stage 3 – linear model
Figure 3 above depicts how network-based integration causes ‘concurrent construction’: a term used when “all project activities are integrated and all aspects of design, construction, and operation are concurrently planned to maximize the value of objective functions while optimising constructability, operability and safety” [2].
In summary, object-based modelling will first blur the lines separating different project lifecycle phases. As model-based collaboration takes hold, lifecycle players start moving into each other’s territory. Finally, as network-based integration becomes the norm, design, construction and operations overlap extensively if not totally.
Note on terms used within Figures:
A BIM data exchange is when a BIM player exports or imports data that is neither structured nor computable. A typical example of data exchange is the export of 2D CAD drawings out of 3D object-based models resulting in significant loss of geometric and semantic data.
A BIM data interchange (or interoperable exchange) is when a BIM player exports and imports data that is structured and computable by another application. Interchanges assume ‘adequate interoperability’ between the sender and receiver systems.
BIMe Initiative The BIMe Initiative is not-for-profit effort based on the BIM Excellence approach. The BIMe Initiative aims to improve the performance of individuals, organisations and project teams in the construction industry through (a) developing a modular language for information exchange; (b) Generating reliable industry-wide competency benchmarks; (c) promoting competency-based learning; and (e) developing intuitive tools and templates for all to freely use.
BIM Dictionary The BIM Dictionary, an online resource for all to freely use. The dictionary hosts terms specific to digital transformation in the construction industry. It hosts hundreds of terms with their descriptions, synonyms and abbreviations.
BIM ThinkSpace BIM ThinkSpace is one of the longest running blogs (first post was in Oct 2005) covering Building Information Modelling from an 'informed practitioners' perspective. It posts infrequently yet shares thought-provoking topics and valuable contributions from international guest authors.
BIM Framework A blog for researchers interested in adapting the BIM Framework (Succar, 2009). Each post focuses on one conceptual part and is linked to peer-reviewed papers.
BIM Excellence BIM Excellence (BIMe) is a research-based method to improve the BIM competency of individuals, organizations and project teams. BIMe uses specialised online tools to compare current abilities against project/client requirements and industry benchmarks.
ChangeAgents AEC ChangeAgents AEC is a BIM performance assessment and improvement consultancy operating since 2004 out of Melbourne, Australia.
Translations
Objectif BIM (French) BIM ThinkSpace Episodes are progressively being translated into French through the good efforts of Mr Patrick Riedo of Objectif BIM
BIMetric Lab (Spanish) A number of BIM ThinkSpace episodes are translated into Spanish through the good efforts of Mr Victor Roig of BIMETRIC (Barcelona, Spain)
Institute for BIM Italy (iBIMi) BIM ThinkSpace episodes are progressively being translated into Italian through the good efforts of Mr Lorenzo Nissim and Ms Miriam Nissim of the Institute for BIM Italy (iBIMi)